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Abstract

The motivation of this *research came about when a neural network direct adaptive

control scheme was applied to control the tip position of a flexible robotic arm. Satisfactory

control performance was not attainable due to the inherent non-minimum phase characteristics of

the flexible robotic arm tip. Most of the existing neural network control algorithms are based on

the direct method and exhibit very high sensitivity if not unstable closed-loop behavior.

Therefore a neural self-tuning control (NSTC) algorithm is developed and applied to this

problem and showed promising results. Simulation results of the NSTC scheme and the

conventional self-tuning (STR) control scheme are used to examine performance factors such :,s

control tracking mean square error, estimation mean square error, transient response, and steady

state response.

1. Introduction

Self-tuning adaptive control used for controlling unknown ARMA plants has traditionally

been based on the minimum variance control law and a recursive identification algorithm (Astrom

and Wittenmark, 1973; Clark and Gawthrop, 1979). Although the advancement in VLSI has

made it more possible to implement real-time recursive algorithms but it is still computationally

intensive due to the recursive nature of the algorithm. On the other hand, neural networks VLSI

has been made available commercially with extreme processing capability due to its parallel

architecture. With this in mind the possibility of formulating neural networks to perform

functions of conventional recursive algorithms becomes important. Hence, in this paper we

propose the neural self tuning control (NSTC) scheme where the implicit identification is

performed by a multilayer neural network (MNN) and the control is based on the generalized

minimum variance (GMV) control law.

Neural networks have undoubtedly demonstrated its effectiveness in controlling nonlinear

systems with known/unknown dynamics and uncertainties (Narendra and Parthasrathy, 1990;

Levin and Narendra, 1993; Werbos et al. 1990; Hunt et ai., 1992). In addition, neural network
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adaptive control algorithms have also been developed for specific linear system model such as the

state space model (Ho et al., 91a) and the ARMA model (Ho et al., 1991b). It was shown in the

simulation results that neural network controllers produced comparable results to conventional

adaptive controllers. In this paper, we investigate the performance of the NSTC and compare it to

the conventional adaptive STR.
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Figure 1.1. Flexible ann system

The flexible arm to be controlled is shown in Figure 1.1. There are two system outputs

that are of interest, one is the hub angle 0h(t) and the other is the tip angle 0t(t) of the arm. The

goal is to apply a neural network control scheme to control these outputs to track the command

angle. The neural controller will generate a control voltage signal u(t) that will feed the power

amplifier in which will force current through the motor and cause the arm position to react. The

dynamical transfer function of the hub angle is a linear minimum phase system in which will be

shown readily controllable by a neural network. In fact, the direct adaptive neural control scheme

in Figure 1.2. can be used to control the hub. This control scheme belongs to the type called

specialized learning control (Psaltis et ai., 1988; Ho et ai., 1991c). However, the tip of the arm,

being in a different location from the actuator point, therefore making the system to be of the type

non-collocated system. The effect of this dynamically is that there is a zero on the right half side of

the s-plane. In other words, the transfer function of the tip angle is of the type non-minimum

phase which presents itself to be very difficult to control when direct adaptive control

methodology is applied. This difficulty may be due to the controller trying to emulate the inverse

dynamics of the non-minimun plant and results in an unstable behavior. According to simulation

studies the specialized learning control algorithm diverges when applied to control the tip angle.

Most other neural control schemes are also based on the inverse dynamics including the indirect

learning method by (Psaltis et al., 1988), the feedback error learning by (Kawato et al., 1988), and

the methods presented by (Narendra and Parthasarathy, 1990).
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Figure 1.3 Indirect neural adaptive control scheme

In this report, we propose to use the neural self tuning control scheme which is based on an

indirect control method (Ho et al., 1991c) to control the tip angle. This scheme is shown in Figure

1.3 where the identification is performed by the MNN and the control is performed by the

generalized minimum variance (GMV) controller. The GMV control algorithm has a dynamic

weighting function Q(q-1) applied to the plant control signal u(k) in the cost function to limit and



condition the control energy. Thus, upon selecting the proper weighting function the controller can

be input/output stable and effective in controlling the non-minimum phase plant. In section 2 the

neural self-tuning control (NSTC) which consists of the minimum variance control algorithm and

the neural identification is presented. Section 3 presents a comparative simulation study of the

adaptive STR scheme and the NSTC scheme. And section 4 gives the conclusion of the results

found in this study and address the advantages and disadvantages of the neural control scheme

used for treating linear system.

2. Stochastic neural self-tuning adaptive control (NSTC)

The NSTC consists of the minimum variance control law and the neural identification

algorithm. The model assumed for the plant is of ARMA input/output type having the form

-d B(q "1) u(k) + C(_ _(k) (2.1)
y(k) = q A(q--_- ) A(q-_)

where u(k), y(k), _(k), and d are system input, output, uncertainty, and delay, respectively. A, B,

and C are unknown system dynamics defined as

A(q -1) = 1 + alq-1 + a2q-2 + ... + ana q-ha (2.2)

B(q "1) = b 0 + bl q-I + b2 q-2 + ... +bnb q'nb (2.3)

C(q -1) = 1 + Cl q-I + c2 q-2 + ... + Cnc q-nc (2.4)

where q is the shift operator. For the above unknown plant, in Figure 1.3, the objective is to

control its output to track a command signal y*(k) based on the generalized minimum variance

contlol index (Clark and Gawthrop, 1979)

J(k+d) = EI ¢2(k+d) }

= E{ [P(q- 1)y(k+d)+Q(q- 1)u(k)-R(q- 1)y*(k)] 2 }

= E{ [_y(k+d)+Q(q- l)u(k)-R(q- l)y*(k)]2 } (2.5)

where E is the expectation operator, Cy(k+d) is the auxiliary output, and P,Q, and R are the

weighting dynamics which can be chosen depending on the required response characteristics.

2.1. Generalized minimum variance control

In this section, the generalized minimum variance self-tuning control algorithm for the

above problem statement is summarized (Clark and Gawthrop, 1979). To obtain the optimal

contlol u(k) which minimizes the performance index (2.5), the predictive auxiliary output Cy(k+d)

in terms of the system dynamics must be determined. Consider the following identity

P(q'l)C(q-l) F(q_l) + q-d G(q -I) (2.1.1)
A(q.l) = A(q_l)

where the order of F(q "l) and G(q -l) are nf---d- 1, ng=na-1, respectively. The output prediction can

be shown to have the form



where

_y(k+d) = Sy(k+d) + _y(k+d) (2.1.2)

A

_y(k+d) = C(q-1) -1 [G(q-l)y(k) + F(q-l)B(q-l)u(k)]

= C(q. 1)- 1[G(q_l)y(k ) + E(q-1)u(k)] (2.1.3)

and

_y(k+d) = F(q-1)_(k+d) (2.1.4)
A

Cy(k+d) and _y(k+d) are the deterministic and uncorrelated random components of _y(k+d).

Next, substituting (2.1.2) into (2.5), there results

J(k+d) = E{[$y(k+d)+Q(q-1)u(k)-R(q-1)y*(k)]2 }+E[_y(k+d)] 2}- (2.1.5)

Since the second term in (2.1.5) is unpredictable random noise which is uncompensatable by the

control input u(k), and the first term is a linear function of u(k), J(k+d) can be minimized by

setting

[_y(k+d)+Q(q- 1)u(k)-R(q-1)y*(k)] = 0 (2.1.6)

Solving for the generalized minimum variance (GMVC) control in (2.1.6) gives

u(k) = R(q-1)y*(k)-¢Y(k+d)
Q(q-l) (2.1.7)

using (2.1.3), (2.1.7) can also be written as

u(k) = C(q- 1)R(q- 1)y*(k)-G(q- 1)y(k)
E(q- 1)+C(q- l)Q(q- 1) (2.1.8)

Remarks : Recall that E(q -1) is equal to F(q-I)B(q -I) where B(q -1) contains the zeros of the

plant. Notice that having the weighting function Q(q-l) additive to E(q -1) in (2.1.8) gives the

designer the ability to alter the poles of the controller. Thus with a non-minimum phase plant

B(q -1) shall have unstable roots but proper selection of Q(q-l) in (2.1.8) can assure the control

signal u(k) to be bounded.

2.2. Neural system identification

In this section, the framework of the neural identification algorithm for the self-tuning

control scheme in Figure 1.3 is presented. Recall the predicted auxiliary output in (2.1.3)

which can also be written as

_y(k+d) = C(q-1)-l[G(q-l)y(k) + E(q-I)u(k)] + F(q-l)_(k+d)

= C(q'l)-llG(q-t)y(k) + E(q-I)u(k)] + v(k) (2.2.1)

where the uncorrelated noise sequence F(q-l)_(k+d) is replaced by v(k). Also (2.2.1) can be

written as



where

ng ne

_y(k:q-d) = Diy(k-i)+ Zeiu(k-i)
i=0 i---0

_y(k+d) = v'(k)0(k)+ v(k)

nc

- ZCi_y(k+d-i) + v(k)
i=l

v'(k) = [y(k)...y(k-ng); u(k)...u(k-ne); _y(k+d- 1)..._y(k+d-nc)l

0'(k) = [go gl "'" gng; e0 el "'" ene; -Cl -c2 "'" -Cnc]

since the parameter vector 0 is unknown, the estimated form of _y(k+d) is given as

wherc

_y(k+d) = _'(k)_(k)

(2.2.2)

(2.2.3)

(2.2.4)

(2.2.5)

(2.2.6)

A A

_r(k) = [y(k)...y(k-ng); u(k)...u(k-ne); _y(k+d-1)...t_(k+d-nc)] (2.2.7)
A A A A A A A A A A

0'(k) = [go gl "'" gng; e0 el "'" erie;-Cl -c2 "'" -Cnc] (2.2.8)

The unknown parameter vector in (2.2.8) (Figure 2.1), is taken from the output of the neural

network

g(k) = [ _l(k) g2(k) ... _j(k) ... _n3(k)]'

-- [Of(k) O2(k)... Oj(k)... On3(k)l' (2.2.9)

Where n3 is the number of neurons at the output layer. Consider the system identification cost

function
1

V(k) = _ E {e'(k)a- 1(k)e(k) }

1 ^ ' 1 a
- - E{ [_y(k)-_y(k)] A- (k)[_y(k)-q_y(k)] } (2.2.10)-2

where A(k) is a symmetric positive definite weighting matrix, and V(k) is minimized by adjusting

the weights of the neural identifier.
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In Figure 2.1, the weights interconnecting the layers will be based on the back propagation

approach (Rumelhart and McClelland, 1986). Consider a general weight vector of n weights

co = [oo(1) co(2) ... co(n)r

The update equation of this weight vector can be expressed as

0V(k)

co(k+ 1) = co(k) - u_

a0 (k) a_y
= o)(k) + vl_-m-_ ,-, AqE(k)

a0(k)

where 1"1is the learning step size.

(2.1.11) is

=?V(k+d)

(2.1.11)

From (2.2.6) we see that the second partial derivative term in

a0(k) (2.1.12)

and the first partial derivative term in (2.1.1 l) can be derived using the differentiation chain rule.

Hence, for the individual weights in each of the neural network layer in Figure 2.1. can be

formulated by using (2.1.12) and the back propagation derivation (Rumelhart and McClelland,

1986). The complete algorithm can be found in (Ho et al., 1991b). Once the estimate of 0 is
A

available, _by(k+d) in (2.2.6) can be computed, and then the control signal can be generated using

(2.1.7).

3. Empirical studies

In this section we examine some simulation results of the indirect neural control scheme for

controlling the flexible arm tip. An attemp to use the direct adaptive control scheme to control the

tip position gave unstable results even after numerous controller parameter changes (Ho et al.,

1993). Next, the NSTC scheme in section 2 was applied to control the tip position and produced

encouraging results. Lastly, the neural identifier in the NSTC algorithm is compared with the

recursive least square identifier.

Recall that this scheme (Figure 1.3.) has two distinct functions, identification and control,

which are done by the neural network and the (GMV) control, respectively. In this section we

perform the simulations of two schemes which are: The adaptive STR using recursive least square

identification, and the NSTC using the neural identification. This is so that a comparative study

can be done to assess the performance of the developed NSTC.

Simulation: The transfer fucntion of the arm tip position that was derived theoretically and

measured experimentally in (Fraser and Daniel, 1991) is



Ot(s) 3.6 (1----__)
__ 48.42

U(s) s(s+0.16) (3.1)

Here, the resonant modes axe excluded and assumed to be completely filtered out because we are

mainly interested in the effects of the unstable zero. This model is then discretized with a sampling

period of 6 rnsec. Recall the control index defined in section 2

J(k+d) = E{q_2(k+d) I

= E { [P(q" 1)y(k+d)+Q(q 1)u(k)-R(q- l)y*(k)]2 } (3.5)

where the weighting functions were chosen as

P(q't)=l; Q(q-l)=.l+.06q'l; R(q-l)'--I (3.6)

and the desired hub position 0_(k) was a step command. Beginning with Figure 3.4. showing the

desired step tip response, the controlled tip response based on the adaptive STR and the tip

response from the NSTC. Obviously both controllers manage to track the command signal.

However, the NSTC seems to have a slower settling time. Figure 3.5. shows the converging

tracking control index (2.1.5) where both schemes seem very comparable to each other. Figure

3.6. displays the comparable control energy produced by these controllers. Note that the transient

control energy was affected by two factors: one is the initial condition of the estimated parameter

vector 0o (which was set as 00 -- [1 l ... 1]' for both control schemes), the further 0o is away

from the optimum 0 in the parameter state space, the longer the convergence of the tracking

control index (2.1.5). The other factor is the selection of the input weighting function Q(q-1)

which has the effect of limiting the control energy with the tradeoff of slower tracking

convergence. Lastly, we compare the recursive least square identification with the neural network

identification. The two identifiers estimate the parameter vector O in (2.2.5) so that the predictive
A

output term d_y(k+d) in (2.2.2) can be computed. Figure 3.7. shows the estimation cost function

V(k) in (2.2.10) response of the RLS and the neural network. V(k) of the RLS has a slightly

faster convergence than the neural network but not by a significant degree. Again, this indicates

that the identification performance of the two algorithms are comparable to each other. The

convergence of the neural network in this kind of control application is serveral orders of

magnitude faster than other applications. In this case it took less than 300 iterations for the 3-layer

nerual network to be maturely trained. This indicates that it is practical for real-time

implementation. For completeness, the time response of the true output 0t(k) and the estimated

output 0t(k) produced by the neural network is shown in Figure 3.8.
3

Neural Network: The three layer neural network N2.5,15,PO used in this scheme consists of one

input layer, two hidden layers, and one output layer with the number of neurons as 2, 5, 15, and

P0, respectively. P0 is the length of the vector defined in (2.2.8) which is (ng+l)+(ne+l)+nc, and



is 11 for the case of the arm tip plant. The input of the neural network was a selected as constant

vector Is = [1 1]' because it was desired that the output of the neural network to be correlated to the

its input. The parameters of the sigmoidal activation function at the output node was found to be

most influential on the tracking error convergent rate. Predominantly the slope of the activation

function was observed to be proportional to the estimation convergent rate V(k). Also the bipolar

sigmoidal saturation levels of the output neuron needed to be set equal to or greater than the

maximum component of the parameter vector 0. The tuning of the sigmoidal functions was done

manually by trial and error. Autotuning of the sigmoidal function parameters can also be applied to

obtain statiscally better results (Yamada and Yabuta, 1992; Proano, 1989). However, the optimal

dimension of the neural network in terms of number of layers and nodes was not known and
3

therefore an initial pick of N2.5.15,PO was used throughout the simulation.
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4. Conclusion

The neural self-tuning control (NSTC) algorithm was developed and applied to control the

tip of a flexible arm system. The dynamics of the flexible arm tip involves an unstable zero and

therefore making the system non-minimum phase, most of the existing neural adaptive control are

based on the inverse dynamics and therefore would not be able to control this type of plant. The

NSTC was based on an indirect control method where the identification is performed by the neural

network and the control was based on the generalized minimum variance (GMV) con_'ol law. The

performance of the NSTC was investigated and was compared to the adaptive STR by means of

simulation.

In summary, the NSTC has a very comparable performance to the adaptive STR shown by

simulation results in section 3. Unlike other applications of neural networks where thousands of

iterations were required before the network can be maturely trained, in this application the neural

network identification had a convergent rate comparable to that of the RLS. Another advantage of

the NSTC is due to the availability of neural network VLSI and the massive parallel architecture of

the neural network there will be a computation advantage over conventional recursive algorithms.

This will enable real-time implementation with faster sampling rate for system with high

bandwidth. Also another advantage of the NSTC is that because the identification is done by the

neural network it inherits the decentralize property, meaning if there is a failure in a node or

connection the impact on the performance will be minimal. Whereas with the conventional digital

filter a failure in one of the coefficients will have a major impact on the output. With all the above

encouraging characteristics there is one important disadvantage of using the neural network and

that the the lack of understanding how the dimension and activation characteristics of a network is

related to its accuracy and stability. Whereas, these issues of the recursive algorithms have been

addressed and elaborately analysed (Kumar, 1990).
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